مقدمه:
ماشن لرنینگ که به اختصار به صورت (ML) نمایش داده می شود، شاخه ای از هوش مصنوعی است و به برنامه های نرم افزاری این امکان را می دهد که بدون هیچ برنامه ریزی در پیش بینی ها با دقت بالاتری عمل کنند و نتایج دقیق تری را در اختیار کاربرانشان قرار دهند. به عبارتی دیگر آموزش ماشین لرنینگ به شما این امکان را می دهد روش های تحقیقاتی خاصی را که یادگیرنده هستند؛ بسازید و این یعنی ایجاد روش هایی که داده را برای بهبود عملکرد در بخش خاصی به کار بگیرد.
الگوریتم های ماشین لرنینگ از داده های تاریخی به عنوان ورودی استفاده کرده تا بتوانند مقادیری را پیش بینی کنند و آن ها را در خروجی نمایش دهند. همه این مزایا تنها با آموزش ماشین لرنینگ قابل استفاده است. سایر کاربرد های ماشین لرنینگ شامل مواردی چون تشخیص تقلب، فیلتر کردن هرزنامه، پزشکی، بینایی کامپیوتر، شناسایی تهیه بد افزار ها، فیلتر کردن ایمیل، اتوماسیون فرآیند کسب و کار و موارد بسیار دیگری است.
اگر بخواهیم به طور کلی بگوییم الگوریتم های ماشین لرنینگ در جایی استفاده می شوند که استفاده از الگوریتم های معمولی دشوار یا غیر ممکن باشد. ماشین لرنینگ ارتباط نزدیکی با آمار و احتمالات دارد. به طور کلی مباحث ریاضی که باید پیرامون ماشین لرنینگ بدانید شامل بهینه سازی در ریاضی هم به صورت تئوری و هم به صورت عملی است.
انواع رویکرد در ماشین لرنینگ
در ماشین لرنینگ چهار رویکرد اساسی وجود دارد که شامل یادگیری با نظارت، یادگیری بدون نظارت، یادگیری نیمه نظارتی و یادگیری تقویتی است. استفاده از این رویکرد ها بر اساس نوع داده و نتیجی که می خواهید به دست بیاورید؛ است. در ادامه به بررسی این چهار مورد می پردازیم.
یادگیری با نظارت (Supervised Algorithms)
در این نوع از رویکرد ماشین لرنینگ، دانشمندان الگوریتم هایی را با داده های برچسب گذاری شده ارائه می کنند. ورودی و خروجی در یادگیری با نظارت تعریف شده است و در طول یادگیری ماشین بر اساس این اطلاعات مدلی خاص ایجاد می شود.
بهترین موارد مصرف رویکرد های با نظارت در کار هایی مانند طبقه بندی باینری (تقسیم داده ها به دو دسته)، طبقه بندی چند طبقه ای ( انتخاب بیش از دو جواب)، مدل سازی رگرسیون (پیش بینی مقادیر پیوسته) است.
یادگیری بدون نظارت (Unsupervised Algorithms)
این نوع از الگوریتم های یادگیری ماشین شامل داده های بدون برچسب گذاری است. در الگوریتم های بدون نظارت خروجی نداریم و آن چیزی که اهمیت دارد؛ دسته بندی داده ها به گروه های مختلف است. اکثر الگوریتم هایی که در یادگیری عمیق و شبکه عصبی استفاده می شود از این نوع هستند.
کاربرد عمده الگوریتم های یادگیری بدون نظارت در مواردی مانند خوشه بندی ( تقسیم بندی دادهای مشابه در یک گروه)، تشخیص ناهنجاری ( شناسایی داده های پرت در یک دیتاست)، کاهش ابعاد (کاهش تعداد متغیر ها بر اساس شرایط خاص) و پیدا کردن ارتباط بین دادهای مختلف است.
یادگیری نیمه نظارتی (Semi-supervised learning)
کاربرد الگوریتم نیمه نظارتی در ماشین لرنینگ ترکیبی از یادگیری با نظارت و یادگیری بدون نظارت است. عملکرد این نوع الگوریتم نیز به صورت ترکیبی است. دانشمندان داده ممکن است در فرایند یک الگوریتم داده ای برچسب گذاری شده را ارائه کنند و این در حالی باشد که مدل یادگیرنده بتواند عملکردی آزادانه داشته باشد و به درک و کشف روابط بپردازد.
عملکرد یادگیری نیمه نظارتی مطابق با مفاهیم آموزش ماشین لرنینگ بدین صورت است که دانشمندادن داده مقدار کمی از داده ها را برچسب گذاری می کنند تا از یک الگوریتم خاص استفاده کنند. با این روش الگوریتم ابعاد داده تمامی داده ها را می آموزد و می تواند داده هایی را که برچسب گذاری نشده بودند نیز برچسب بزند. مهم ترین کاربرد های آن شامل تشخیص تقلب، ترجمه ماشینی و برچسب گذاری داده ها می باشد.
یادگیری تقویتی (Reinforcement Algorithms)
عملکرد یادگیری تقویتی در آموزش ماشین لرنینگ به این صورت است که ماشین برای تکمیل یک فرآیند چند مرحله ای با قوانین مشخص مورد استفاده قرار می گیرد و بر اساس تصمیم گیری آموزش دیده است. دانشمندان داده الگوریتمی را برای تکمیل یک کار برنامهریزی میکنند و به آن نشانههای مثبت یا منفی میدهند تا بتواند کارش را تکمیل کند. اما در بیشتر موارد، الگوریتم به تنهایی تصمیم می گیرد که چه مراحلی را در طول مسیر طی کند.
طبق قوانین در آموزش ماشین لرنینگ؛ یادگیری تقویتی بر اساس پاداش و مجازات فعالیت می کند. این الگوریتم می کوشد به بهترین شکل ممکن فعالیت خود را انجام دهد تا تشویق شود و از مجازات دور بماند و این روش برای رسیدن به هدف بسیار مفید است. بیشترین کاربرد یادگیری تقویتی در مواردی چون رباتیک، بازی های رایانه ای و مدیریت منابع و تخصیص منابع می باشد.
آموزش ماشین لرنینگ و سایر حوزهها
اصطلاح ماشین لرنینگ در سال 1959 توسط آرتور ساموئل که از فعالان بازی های کامپیوتری و هوش مصنوعی بود؛ ابداع شد و این شروعی برای حرکت به سمت آموزش ماشین لرنینگ بود. امروزه آموزش ماشین لرنینگ با دو هدف دنبال می شود. اولین هدف طبقهبندی دادهها بر اساس مدلهای توسعهیافته، و هدف دیگر نیز پیشبینی نتایج آینده بر اساس این مدلها است. در ادامه به بررسی رابطه ماشین لرنینگ با سایر حوزه ها می پردازیم بیشتر متوجه کاربرد و اهمیت آن شوید.
ماشین لرنینگ و هوش مصنوعی
آموزش ماشین لرنینگ به عنوان بخشی از آموزش هوش مصنوعی ارائه می شود و از زیر شاخه های آن است. اینجا بود که آموزش ماشین لرنینگ هدف خود را از دستیابی به هوش مصنوعی به مقابله با مسائل قابل حل با ماهیت عملی تغییر داد. این روش تمرکز را از رویکردهای نمادینی که از هوش مصنوعی به ارث برده بود، تغییر داد و به روشها و مدلهایی که از آمار، منطق فازی و نظریه احتمال گرفته شده بود، رفت.
تفاوت بین ماشین لرنینگ و هوش مصنوعی اغلب به اشتباه درک می شود. ML بر اساس مشاهدات غیرفعال میآموزد و پیشبینی میکند، در حالی که هوش مصنوعی دلالت بر تعامل عاملی با محیط برای یادگیری و انجام اقداماتی دارد که شانس آن را برای دستیابی موفقیتآمیز به اهدافش به حداکثر میرساند.
ماشین لرنینگ و علم داده
علم داده نیز مانند ماشین لرنینگ از حوزه های وابسته به هوش مصنوعی است. تمرکز اصلی علم داده روی تجسم داده ها، مهندسی و ارائه بهتر آن ها است. اما ماشین لرنینگ تمرکز خود را روی الگوریتم های یادگیری و یادگیری از طریق تجربه گذاشته است. همانطور که از نام این دو حوزه مشخص است، داده ها هدف اصلی علم داده است و از فرآیند ها و سیستم ها برای استخراج داده ها استفاده می کند. متقابلا؛ درباره ماشین لرنینگ نیز می توان گفت رشتهای است که به رایانه ها توانایی یادگیری بدون برنامهریزی را میدهد و یادگیری هدف اصلی آن است.
اگر بخواهیم تصمیم بگیریم که به سراغ ماشین لرنینگ برویم یا علم داده و انتخاب کنیم که کدام یک بهتر است؛ باید بگوییم ماشینها نمی توانند بدون داده ها فرآیند یادگیری را پیش ببرند و علم داده بهتر است با ماشین لرنینگ همراه باشد. در آینده، دانشمندان داده برای مدلسازی و تفسیر کلان داده هایی که تولید میشوند، حداقل به یک درک اولیه از یادگیری ماشین نیاز دارند.
ماشین لرنینگ و دیپ لرنینگ
بسیاری از افراد معتقد هستند که ماشین لرنینگ و دیپ لرنینگ یکی هستند و می توان آنها را به جای یکدیگر استفاده کرد. البته این تصور بعضی از افراد است و کاملا غلط است. به طورکلی می توان گفت ماشین لرنینگ و دیپ لرنینگ از شاخه های هوش مصنوعی هستند. در حقیقت دیپ لرنینگ نیز زیر مجموعه ماشین لرنینگ به حساب می آید.
یادگیری عمیق از ساختار پیچیده ای از الگوریتم های مدل سازی شده بر روی مغز انسان استفاده می کند. عملکرد دیپ لرنینگ به گونه ای است که امکان پردازش داده های بدون ساختار مانند اسناد، تصاویر و متن را فراهم می کند. ماشین لرنینگ نیز به معنای یادگیری از داده ها با استفاده از الگوریتم ها برای انجام یک کار بدون برنامه ریزی است.
یکی از معروف ترین کمپانی هایی که از هوش مصنوعی و به طور ویژه دیپ لرنینگ استفاده می کند؛ کمپانی نتفلیکس است. نتفلیکس از یک الگوریتم یادگیری عمیق استفاده می کند تا متوجه شود که کاربران کدام محتوا را دوست دارند و کدام محتوا را نمی پسندند. سپس از این داده ها استفاده می کند و محتوایی را که کاربر ممکن است دوست داشته باشد را ارزیابی کرده و آن را نمایش می دهد.
آموزش ماشین لرنینگ مناسب چه افرادی است؟
امروزه اهمیت استفاده از ماشین لرنینگ بیش از پیش احساس می شود و شرکت های بزرگ دنیا به سمت آموزش ماشین لرنینگ در حرکت هستند. چرا که می دانند هوش مصنوعی و ماشین لرنینگ جهشی به سمت آینده تکنولوژی است. معروف ترین ابر کمپانی که سال ها است از ماشین لرنینگ استفاده می کند؛ کمپانی متا است. این کمپانی پرطرفدار ترین اپلیکیشن های دنیا؛ یعنی فیسبوک و اینستاگرام را مدیریت می کند. محتوای موتور توصیه های خبری فیسبوک توسط ماشین لرنینگ تامین می شود.
فیس بوک از یادگیری ماشینی برای شخصی سازی ارائه محتوای موتور جستجو هر کاربر استفاده می کند. اگر کاربری برای خواندن پستهای یک گروه خاص توقف کند و این کار را مکررا انجام دهد، موتور توصیه شروع به نمایش بیشتر فعالیت آن گروه میکند. در پشت صحنه، موتور در حال تلاش برای تقویت الگوهای شناخته شده در رفتار آنلاین اعضا است. اگر کاربر الگو های خود را تغییر دهد و نتواند پست های آن گروه را در هفته های آینده بخواند، فید اخبار مطابق با آن تنظیم میشود.
کاربرد ماشین لرنینگ در دنیای واقعی
بسیاری از فعالیت ها نیز وابسته به آموزش ماشین لرنینگ و استفاده از آن است که در ادامه به معرفی آن ها می پردازیم.
-
مدیریت ارتباط با مشتری
نرمافزار CRM از الگوریتم های ماشین لرنینگ برای تجزیه و تحلیل ایمیل استفاده می کند و اعضای تیم فروش را وادار می کند که پیام ها را مدیریت کنند و ابتدا به مهمترین پیامها پاسخ دهند. سیستم های پیشرفته تر حتی می توانند پاسخ های بالقوه و موثر را توصیه کنند.
-
هوش تجاری
مدیران هوش تجاری و تجزیه و تحلیل از با استفاده از آموزش ماشین لرنینگ و پیاده سازی الگوریتم های آن در نرم افزار خود برای شناسایی داده های بسیار مهم، الگوهای رفتار و مکان داده و ناهنجاری ها در داده های پرت استفاده می کنند.
-
سیستم های مدیریت منابع انسانی
سیستمهای HRIS میتوانند از الگوریتم ها و مدل های ماشین لرنینگ برای فیلتر کردن برنامه ها و شناسایی بهترین گزینه ها برای یک موقعیت کاری خالی استفاده کنند.
-
ماشین های خودران
آموزش ماشین لرنینگ و الگوریتم های آن، این امکان را برای یک خودروی نیمهخودران فراهم می کنند که یک شی را که به طور کامل در معرض دید نیست؛ تشخیص داده و به راننده هشدار دهد.
-
دستیاران مجازی
دستیارهای مجازی نیز کاملا هوشمندانه عمل می کنند و مدلها و الگوریتم های ماشین لرنینگ با نظارت و بدون نظارت را برای تفسیر گفتار طبیعی و زمینه عرضه ترکیب میکنند.
اهمیت آموزش ماشین لرنینگ
توضیح اینکه چگونه یک الگوریتم خاص ماشین لرنینگ کار می کند آسان نیست. زمانی که مدل پیچیده شود به یک چالش بزرگ تبدیل می شود. در برخی مشاغل متخصصان داده باید روند کار یک الگوریتم یا مدل را به دیگران توضیح دهند و برای این کار باید از الگوریتم های ساده استفاده کنند تا بتوانند دلیل تمامی تصمیم های گرفته شده را توضیح دهند.
حال تصور کنید به عنوان یک متخصص داده در بانک یا بیمه مشغول به کار هستید و قرار است حجم عظیمی از داده های پیچیده را با استفاده از الگوریتم های ماشین لرنینگ توضیح دهید. مدلهای پیچیده میتوانند پیشبینی های دقیقی ایجاد کنند، اما توضیح دادن به یک فرد غیرمتخصص میتواند دشوار باشد.
انتخاب بهترین مدل ماشین لرنینگ
برای حل یک مشکل به وسیله ماشین لرنینگ؛ باید مناسب ترین راه حل را پیدا کنیم. فرایند انتخاب مدل مناسب برای حل مسئله اگر به درستی انتخاب نشود؛ می تواند زمان بر باشد. به صورت کلی برای انتخاب بهترین روش می توانید مراحل زیر را طی کنید.
مرحله 1: در مرحله اول و برای شروع؛ مشکل را با داده های ورودی تراز کنید. برای انجام این مرحله باید کار را به دست متخصصان امر یعنی؛ دانشمندان داده و کارشناسان این حوزه بسپارید چرا که درک عمیقی از این مشکل دارند.
مرحله2: طبق مفاهیم آموزش ماشین لرنینگ داده ها را جمع آوری کرده و قالب بندی می کنیم. در صورت لزوم می توان این داده ها را برچسب گذاری کرد. انجام این مرحله نیز بر عهده دانشمندان داده است.
مرحله3: الگوریتم های مناسب را انتخاب می کنیم و آن ها را مورد آزمایش قرار می دهیم تا میزان عملکرد دقیق آن ها را به دست آوریم. این مرحله نیز به دست دانشمندان داده انجام می شود.
مرحله 4: در این مرحله خروجی ها را به گونه ای تنظیم می کنیم که بالاترین میزان دقت را به دست آوریم. برای انجام این مرحله باید درک عمیقی از مشکل به وجود آمده داشته باشیم.
آینده ماشین لرنینگ
آموزش ماشین لرنینگ هر روزه طرفداران زیادی را جذب خود می کند، چرا که پیشرفته ترین با ستفاده از ماشین لرنینگ می توان پیشرفته ترین برنامه های هوش مصنوعی را تقویت کرد. پلتفرم هایی که از ماشین لرنینگ استفاده می کنند؛ بی رقیب ترین پلتفرم ها در حوزه های فناوری هستند.
از جمله پلتفرم هایی که از ماشین لرنینگ استفاده می کنند؛ می توان به آمازون، گوگل، مایکروسافت و IBM اشاره کنیم. کاربرد اصلی ماشین لرنینگ در این پلتفرم ها در ثبت نام مشتریان برای خدمات است. در اصل مواردی چون جمعآوری داده ها، آماده سازی داده ها، طبقه بندی داده ها، ساخت مدل، آموزش و استقرار برنامه به وسیله ماشین لرنینگ انجام می شود. همه این موارد نشان دهنده اهمیت آموزش ماشین لرنینگ است که در بسیاری از موارد کاربرد دارد و صنعت و تجارت بیش از پیش به آن وابسته می شود.
نظر بدهید